

AArrmmyy EEnntteerrpprriissee IInntteeggrraattiioonn OOvveerrssiigghhtt OOffffiiccee

((AAEEIIOOOO))

IInntteerrffaacceess ffoorr EEnntteerrpprriissee SSoolluuttiioonnss

JJaannuuaarryy 22000055

Interfaces for Enterprise Solutions
Army Enterprise Integration Oversight Office (AEIOO)

January 2005 i

Executive Summary

In virtually all sectors, management is seeking increased value from their organization’s business
processes. Moving information through the enterprise (internally and externally), from person to
person, in as little time as possible facilitates streamlining business processes and reducing costs.
This minimal transfer time or zero-latency enterprise concept is a key driver for the current popularity
of integrating disparate applications across the extended enterprise. In large, complex organizations,
the extended enterprise is far-reaching, representing domestic and overseas operations, as well as
business partners. This flow of information is generically referred to as an ‘interface’ in this document.
However, an interface can take on many forms, from simply exchanging basic data between two
applications to exchanging data and complex business logic within an unlimited network of remote
systems. This document discusses these concepts by providing information on fundamental interface
concepts, interface architectures, and interface cost analysis.

Fully integrating an organization under one enterprise system may eliminate the need for interfaces,
but this is not feasible in most large enterprises. Management must evaluate and implement a
coordinated interface architecture, preferably before systems are implemented. This interface
architecture is aligned with the organization’s existing enterprise architecture. Performing these steps
avoids fostering the ‘accidental architecture’, which exists where multiple incompatible interface
solutions are adopted over time, creating ‘islands of integration’. With interface technology changing
so rapidly, organizations are struggling to select (and maintain) an interface architecture that meets
their needs. Selecting an interface architecture that adopts widely-used standards, such as the
eXensible Markup Language (XML), will help ensure compatibility with the plethora of software
products. Exchanging information within the extended enterprise requires a shared communication
language, one that standards greatly facilitate. When evaluating standards, organizations should
realize the value of commercial standards over industry or organization specific standards because of
their widespread applicability and ‘out-of-the-box’ software compatibility.

While traditional interface architectures, such as point-to-point and hub and spoke, have been widely
deployed for many years, they are costly to maintain and do not provide the loose-coupling and fast
return-on-investment that many Chief Information Officers are now seeking. A variant of the hub and
spoke architecture being implemented by Enterprise Resource Planning (ERP) system vendors
provides a step in the right direction with pre-configured integration and adaptability for outlying
applications. Web services and the Enterprise Service Bus (ESB) architecture are promising interface
technologies that provide access to loosely coupled services using commercial standards and existing
infrastructure. Web services and ESB support a service oriented architecture for either an
organization’s internal applications or those integrated with the extended enterprise.

Building interfaces is time consuming and expensive. Interface work can represent up to 40 percent of
total rollout costs for large-scale applications.[1] Interface costing is analogous to purchasing a car –
while the base price may provide an initial guess of the cost, it isn’t in the ballpark until options, fees,
and long-term value are considered. One million dollars is likely an average estimate for the cost of a
complex interface in a large enterprise; however, many factors such as the interface architecture, the
cost estimating method, and functional, technical, and organizational characteristics significantly
impact the cost of an interface. By having an understanding of interface technology and cost factors,
system architects are better equipped to design and deploy cost-effective interface architectures.

Special Thanks To:

Scott Bernard, Ph.D. Carla von Bernewitz
John Browne, Jr. Paul Derby, Ph.D.
Tom Gulledge, Ph.D. Alan Jones
Jon Marshall John Nyere
Amy Taylor Jess Thompson
Dr. Paul Tibbits Larry Wright

Interfaces for Enterprise Solutions
Army Enterprise Integration Oversight Office (AEIOO)

January 2005 ii

Table of Contents

Section Page

A. Introduction ... 1
 Purpose & Scope

Glossary of Terms, Acronyms & References
Evolution of Interfaces
Objectives & Benefits of Interfaces

B. Interface Concepts.. 4

Interface Technology Fundamentals
Standards
Interface Documentation

C. Interface Architectures .. 7

D. Interface Cost Analysis ... 9

Interface Cost Estimating Methods
Counting Interfaces

E. The Road Ahead... 13

F. Wrap-up .. 14

Appendix A – Interface Architecture Descriptions App. A

Appendix B - Glossary of Terms... App. B

Appendix C – Acronyms... App. C

Appendix D - References ... App. D

List of Figures & Tables

Figure 1 - Basic Interface... 4
Figure 2 - Characteristics of a Successful Interface 5
Table 1 - Interface Architecture Characteristics............................... 8
Figure 3 - Lifecycle of Costing Methods... 10
Table 2 - Interface Cost Estimate .. 12
Table 3 - Interface Characteristics ... 13
Figure 4 - Point-2-Point Interface... App. A.1
Figure 5 - Hub and Spoke Interface... App. A.2
Figure 6 - Web Services Process Flow.. App. A.4
Figure 7 - Web Services Interface ... App. A.5
Figure 8 - The Accidental Architecture... App. A.6

Interfaces for Enterprise Solutions
Army Enterprise Integration Oversight Office (AEIOO)

January 2005 Page 1 of 14

A. Introduction

“Possibly the single most transforming thing in our forces will not be a weapons
system, but a set of interconnections and a substantially enhanced capability because
of that awareness.”

Secretary of Defense
Donald Rumsfeld
August 9, 2001 [2]

In the industrial age the interconnections Mr. Rumsfeld refers to may have consisted of verbal
agreements between business partners. However, in the digital age these interconnections take the
form of a system interface.

An interface can be defined as a physical or logical connection between two systems in order to
communicate or work together effectively. Similarly, the Department of Defense’s (DoD) RICE
(Reports, Interfaces, Conversions, Extensions) Development Process and Procedures document
defines an interface as “a boundary across which two independent systems meet and act on or
communicate with each other.”[3]

The late ‘90s ushered in the popularity of Enterprise Resource Planning (ERP) packages such as
SAP, PeopleSoft and Oracle Applications. This was partly due to the idea of integrating various
business processes with a single system to allow near real-time access to relevant information. Thus,
efficiency and effectiveness were gained by cross-functional process integration. For a variety of
reasons, organizations that migrated to an ERP were left with outlying processes that were not
supported by the enterprise system. To integrate these outlying processes (and their supporting
systems) with the enterprise system, interfaces were implemented to share information between the
ERP and the outlying system. Whether using an ERP, best-of-breed approach, in-house approach, or
a mix of these approaches, organizations, such as the Army, spend millions of dollars every year
building and maintaining interfaces between systems. Integration among new and existing
applications is a problem that costs companies over $100 billion per year. Often, application
interfaces can grow more complex than the applications themselves.[4]

Having recognized there is a need to integrate, enterprises should design an interface architecture
before implementing the first interface. But as simple as this may seem, the design carries
consequences that can have extraordinary impacts on the organization. A point-to-point approach
may be fast to implement and technically simple, but it may cheat the enterprise out of multiple points
of efficiency. A hub and spoke approach, such as Enterprise Application Integration (EAI), may be
overly complex and feature-filled, but ultimately miss the mark of the enterprise’s needs.[5]

Although the focus of this document is on system interfaces, interfaces, integration and interoperability
are closely related. Paramount to the interface topic is the idea of an enterprise architecture and the
requirements of business processes. First, it is absolutely essential that an enterprise architecture be
in place to guide the selection of an interface architecture. For instance, Federal agencies are
oblicated to align with the Federal Enterprise Architecture (FEA), which is a set of models that promote
cross-agency integration and collaboration. Second, business requirements should drive IT solutions
[6], including interfaces. The E-Gov initiatives are excellent examples of business requirements for
interfacing data between systems (e.g., E-Travel, E-Clearance, E-Grants, for more see:
www.whitehouse.gov/omb/egov/c-presidential.html). This document assumes that the interface
architecture will align with an enterprise architecture and the business requirements will drive the
design of the interface.

While most system integrators agree there are various degrees of interface sophistication, few agree
on the terms used to describe them. In this document, the term interface will be used generically to

Interfaces for Enterprise Solutions
Army Enterprise Integration Oversight Office (AEIOO)

January 2005 Page 2 of 14

refer to any type of data/information exchange between systems, regardless of the degree of
integration or interoperability. The terms describing integration are used as follows in this document:

• Interconnecting - this is the lowest level of interface sophistication, described as an
antiquated style of interfacing flat file data.

• Integration – this is defined as the next level of sophistication where an enterprise’s business
processes can operate collectively in a seamless, event-driven fashion because the
underlying systems communicate with each other through the transfer of data and semantics.

• Interoperability – As opposed to the two above, interoperability is more a characteristic that
objects (e.g., systems, enterprises) can possess rather than perform. From a data
standpoint, it describes the ability of systems to exchange data without requiring
transformation, because the systems have adopted the same standards. However, from a
broader perspective, it describes the ability of objects to ‘work together’ with a shared
ontology (i.e., each party understanding the semantics, context, etc. of messages
exchanged).

Purpose & Scope

For many years to come interfaces will be the glue that connects disparate business processes,
enabling applications to exchange multi-layered information. However, managing interfaces involves
first defining the interface requirements and then evaluating alternative interface architectures.[6] The
second step is what this document focuses on by analyzing predominant and emerging interface
architectures. Guidance on how to determine the most cost-effective alternative interface architecture
is also discussed.

This document provides fundamental information regarding software interface concepts, interface
architectures, and interface cost analysis. The scope includes the technology and financial aspects
surrounding software interfaces for information systems. Within this document a software interface
includes any logical interaction and transmission of information between two information systems
using a program or multiple programs. The scope does not include user interfaces or hardware
interfaces.

Glossary of Terms

Refer to Appendix B for the Glossary of Terms.

Acronyms

Refer to Appendix C for the list of acronyms.

References

Refer to Appendix D for document references shown in brackets [].

Evolution of Interfaces

Historically, interfaces were confined to the technical aspects of hardware and the interconnectivity of
computing components. Interfaces had a mechanical connotation and piecemeal quality: making
different pieces of equipment work together. As the computing industry and knowledge evolved,

Interfaces for Enterprise Solutions
Army Enterprise Integration Oversight Office (AEIOO)

January 2005 Page 3 of 14

interfaces began to include software, data and communication. The goal became transferring
information from one system to another electronically to avoid reentering it manually. This was initially
widely deployed using a batch approach where a set of information was transferred on a periodic
basis. Then as software and hardware advanced, transferring information in real-time became the
norm and individual transactions could be transmitted instead of a batch of transactions.

Electronic Data Interchange (EDI) became a popular method to interface with other organizations by
using an intermediary to facilitate the data exchange. However, high costs and EDI’s proprietary
technology prevented its widespread use. In the 1990’s the desire for organizations to exchange
information internally and externally grew with the pace of globalization and competition.
Organizations sought ways to exchange more of their information and exchange it faster. However,
grand ideas about the Web blurred organizations’ focus on the value of interfacing information both
internally and externally. Business demands and new technology in the areas of middleware,
standard protocols, and software tools helped organizations refocus on the value of interfacing and
integrating their systems.

The focus has moved from simply interfacing within organizations to integration within and among
organizations. Although outside the scope of this document, integration has come to mean more than
just technology. Systems integration involves a complete system of business processes, managerial
practices, organizational interactions, structural alignments, and knowledge management. It is an all-
inclusive process designed to create seamless and highly agile processes and organizational
structures that are aligned with the strategic and financial objectives of the enterprise. System
integration is achieved when the processing environment, technologies, human performance, and
business processes all function in a harmonious and congruent manner.[8] This full blown concept of
integration has not yet become ubiquitous, but this document provides insights on how to get there.

Objectives & Benefits of Interfaces

The ultimate objectives of interfaces are to reduce costs and improve efficiency, effectiveness,
responsiveness, and stakeholder satisfaction. The underlying objectives of interfacing systems
contribute to achieving these ultimate objectives. For instance, overall costs can be reduced by
eliminating manual data entry while operating efficiencies can be gained by interfacing data quickly
between systems. Other underlying objectives of interfaces include increased access to information,
improved interoperability, enhanced self-service capabilities, reduction of errors, increased growth
capability, and the most important – business process alignment and integration.

Without delving into the differences between interfacing and integration, it is important to at least
understand that the concept of event-driven sharing of information among systems is a core
component of the Net-Centric approach. Modern interface architectures can provide efficient and
effective communication between systems that enable the attainment of net-centricity. Delving down
from the process level to the data level, interfaces/integration provide the connectivity that allows
communities of interest to exist. A community of interest is a network that crosses organizational and
service boundaries to provide disparate systems access to shared data.

Increased collaboration and coordination is a more recent objective of system interfacing, commonly
referred to as integration. New technologies such as Web services and standardized Internet
protocols have transformed the way people collaborate to exchange information and develop
solutions. Further, these technology capabilities are available around the clock as opposed to the
“business hours” of the industrial age. New technologies have transformed the way organizations
interact with employees, suppliers, and customers. No longer does one need to wait until the bank
opens in the morning to make a transfer between accounts – it can be done on-line around the clock.
With an enterprise such as the Army requiring interaction and data exchange across all time zones,

Interfaces for Enterprise Solutions
Army Enterprise Integration Oversight Office (AEIOO)

January 2005 Page 4 of 14

the ability to conduct operations regardless of location, time of day, or personnel availability has
obvious advantages.

Although interfaces provide many advantages, organizations continually fall prey to their pitfalls.
Organizations that do not select an interface architecture aligned with the enterprise architecture are
susceptible to hindering future integration efforts. Similarly, an interface architecture that does not
address all data exchanges creates ‘islands of integration’ where only a subset of systems is
integrated. Interfaces that involve code ‘owned’ by a division of an enterprise promote turf-holding and
risk missed opportunities for integration.

B. Interface Concepts

Interface Technology Fundamentals

At the most abstract level, interfaces are used to move information from one information system to
another so that the receiving system can use the information effectively. The core characteristic of all
interfaces is the transmission of data elements, which at the lowest level can include just binary bits
(1s and 0s) or at the higher level human readable information such as numbers and text. See Figure
1 for a basic view of an interface scenario where a Payroll application and a Human Resources
application send data to each other. Assume the payroll application stores its data in a local file F1.
Now assume that the newer Human Resources application obtains its data by reading data in a file F2
whose format is different from that of F1. Further, the two applications are run on two different
machines. Thus, a communication link between these two applications implies the use of transfer
software and the reformatting of data between F1 and F2. This document uses the term ‘transfer
software’ as the software that performs the interface transmission, transformation, and work flow;
however, note that Figure 1 generalizes the implementation of ‘transfer software’ because not all
transfer software connects directly to the database.

File F1 File F2

Payroll
Application

Human
Resources
Application

Transfer
Software Interface Transfer

Software

Machine X Machine Y

Figure 1 - Basic Interface

In an ideal interface, the systems involved speak the same language and do not require any
translation of the transmitted data’s syntax or semantics. The syntax standards define the format of

Interfaces for Enterprise Solutions
Army Enterprise Integration Oversight Office (AEIOO)

January 2005 Page 5 of 14

messages (e.g. XML) and the semantic standards define the meaning of the data (e.g. ebXML).
Adopting ‘open’ standards provides the use of widely accepted and supported formats, avoiding the
need for translations. Open standards support interoperability, portability, and scalability and are not
proprietary. However, more frequently there is a need to translate the data from the originating system
to a format that is compatible with the receiving system. The format consists of the set of symbols and
structures that define the physical implementation of data conforming to specified semantics and
syntax. The data interchange mechanism is a set of tools, utilities, or application programming
interfaces which perform the conversion into and/or out of a data interchange format.

The interface topic is pervasive throughout the Office of Management and Budget’s FEA. The Service
Interface and Integration service area of the FEA Technical Reference Model provides a foundation to
describe the standards, specifications, and technologies for how agencies will interface (both internally
and externally) with a service component.

Although there is a variety of interface architectures in use, there are core characteristics that must be
in place for each of the interface architectures to be effective. For a list of these characteristics see
Figure 2. For descriptions of the characteristics refer to the Glossary of Terms in Appendix B.

Compatibility

In
te

rfa
ce

 R
el

ia
bi

lit
y/

Ba
nd

w
id

th
 A

va
ila

bi
lit

y

Well Designed

Business Processes

Tim
ing

Defined User

Requirements

Security

D
ata Integrity /

Error H
andling

Agil
ity

Openness

Interface

Figure 2 - Characteristics of a Successful Interface

In the current technology environment it is no longer possible to talk about system interfaces without
also discussing integration and interoperability. The Joint Financial Management Improvement
Program recently held a forum to discuss “Keys to Successful Integration/ Interoperability of Business
Management Systems”. Although the forum focused solely on the government sector, there are two
issues that are particularly applicable across all industries:

1. Funding mechanisms are a concern. Achieving interoperability of business processes is a
complex undertaking, and not well supported by current government funding and
accountability structures.

2. Communication remains a challenge. There is a lack of precision in the process. Vendor
representatives stress that interoperability is a spiral rather than a linear development –
systems must be defined to deal with ambiguity and change because it is impossible to
identify all requirements and circumstances up front. Interoperability is an iterative process;
assumptions cannot be cast in stone and changes create interdependencies which must be

Interfaces for Enterprise Solutions
Army Enterprise Integration Oversight Office (AEIOO)

January 2005 Page 6 of 14

communicated to all stakeholders.[9] Selecting an interface architecture that adopts
commercial standards helps reduce the impact of changes.

Standards

Interface standards have been around since before computers were invented. In fact, one can look at
the way electricity is provided in our homes to see an early interface standard. Electrical outlets are
made with a standard configuration to provide interoperability with equipment. As with most interface
standards, there is a limit to the deployment of the electrical outlet standard. For instance, when
traveling overseas, a different electrical standard applies.

To see the importance of interface standards one can look to the Baltimore fire of 1904. Here the
entire city almost burned to the ground because neighboring firefighters’ hoses could not connect to
fire hydrants as a result of non-standard coupling sizes and threads. Firefighters were called in from
other cities, but when they arrived their hoses could not fit Baltimore hydrants. There was no standard
thread size at the time for coupling hoses to hydrants. The fire destroyed 1,500 buildings over a 70-
block area. Following the fire, the National Bureau of Standards (now NIST) performed an
investigation and identified 600 different coupling variations used in the country. Shortly thereafter a
standard coupling was developed and deployed.[10]

Although we know standards help ensure that an interface will enable the connection of two systems,
we do not know what standard an interface should use because the problem domain has become so
vast. Interface standards run the gamut of formal to de jure to de facto. Formal interface standards
are developed by accredited standards organizations such as the International Organization for
Standards (ISO) and the American National Standards Institute (ANSI) or professional societies such
as the Institute of Electrical and Electronic Engineers (IEEE). De jure interface standards are
developed by legal authorities such as the National Institute of Standards and Technology (NIST) of
the U.S. government. De facto standards come into being simply through widespread use and
popularity. Other standards are developed by specific industries, such as the defense, health-care,
banking, and automotive industries. For instance, the U.S. military developed MILS (Military
Standards), which help to ensure that internal and external exchanges of data conform to
standardized syntax and semantics to avoid errors in communication. MILS has been in use for nearly
four decades, dwarfing any current interface technology standard, and has provided significant value
over the years. However, it has grown outdated, partly due to its fixed length requirement (80
characters) and its lack of compatibility with commercial standards. Although the MILS standard
needs to be phased out, it should serve as an example that standards are an essential component of
exchanging data between disparate systems.

The benefits normally attributed to using standards are interchangeability, interoperability, portability,
reduced cost and risk, and increased lifetime.[6] One interface standard currently gaining popularity is
XML, which provides a way of describing data so it can be easily interfaced between systems. XML is
an open standard developed by the World Wide Web Consortium (W3C). XML has many advantages,
for instance, it can be read and understood by both humans and machines because it is stored in
Unicode (text), it is platform independent and it is self-describing through the use of tags (i.e., labels,
which is a key component of the DoD Net-Centric Data Strategy). Despite the recent popularity of
Internet-based standards, EDI standards such as X.12 and EDIFACT continue to be the dominant
interfacing standards used for electronic commerce (i.e., external transactions only), accounting for
95% of the world’s transactions.[11] For example, DISA’s DoD Electronic Business Exchange (DEBX)
is an EDI hub for defense-related transactions that processes 30 million transactions per month.[12]

To date, standards have focused on protocols, such as how objects communicate; however, standards
have not focused on business processes, or how objects perform. Efforts to develop business
process standards must be strengthened to reap the full value of interface capabilities.

Interfaces for Enterprise Solutions
Army Enterprise Integration Oversight Office (AEIOO)

January 2005 Page 7 of 14

Interface Documentation

Although it is widely known that documenting interfaces is critical to help ensure efficiency and
effectiveness, interface documentation is rarely done sufficiently to accomplish that objective.
Organizations usually have system environments that consist of heterogeneous components designed
by different teams, each with distinct objectives. Interface documentation is necessary to help the
components work together and support each other. Interfaces are the glue that holds the components
together. Interdependencies also become evident through the process of creating and maintaining
interface documentation.

While there are various opinions on the level of detail that should be documented for interfaces, there
is no disagreement that core input/output information should be documented. Belliappa [13] provides
a view on interface documentation for a system’s external interface, stating that interface
documentation should first detail a “big picture” view. Then the documentation should be the one point
of reference that allows integrators to obtain any information about other components that might be
relevant to each other. This includes interface name and functions, supporting programs (i.e.
methods/procedures), inputs, outputs, range of values for inputs and outputs where appropriate,
exceptions that might occur, and exception handling. The interface documentation does not include
detailed internal information of the components that might not be relevant to other components.

In the Defense arena, a format for interface documentation is prescribed in the DoD Architecture
Framework (DoDAF). Within the framework’s Systems View, the Systems Interface Description
document (SV-1) is prepared for each interface. The SV-1 first addresses the system level information
and then serves to support further coordination with the Operational and Technical Views of DoDAF.
DoDAF captures the far reaching implications of interfaces through this coordination at multiple ‘view’
levels. DoD also maintains a repository of information about implemented interfaces in the RICE
repository to support reuse. RICE objects refer to data elements that may include object description
and attributes, reference documentation, point of contact information, and development status. The
purpose of the RICE repository is to create a vehicle in which COTS (commercial-off-the-shelf)
implementations can leverage work already done, eliminate redundancy, and reduce efforts and costs.

C. Interface Architectures

There are a few interface architectures that have been in existence for a number of years (e.g., point-
to-point); however, the growth of the Internet has brought about advanced interface architectures to
enable the sharing of information between systems. Many of the new, advanced interface
implementations incorporate a mixture of other interface architectures, such as the Enterprise Service
Bus incorporating Web Services. Listed below is a brief description of the widely used or emerging
interface architectures.

• Point-to-Point (P-2-P): Architecture where one application exchanges information directly
with one other application through the use of a tightly-coupled transfer program.

• Hub and Spoke: Architecture where a centralized software component (e.g. integration
broker) routes messages and coordinates activities between connected applications. EAI
products generally implement some form of this architecture.

• Web Services: Architecture that leverages open standards (e.g. XML) to enable
organizations to provide and use ‘services’ via the Internet, both internally and externally.

• The Accidental Architecture: Architecture that results from accumulating a mixture of
incompatible interface architectures, creating stove-pipes of information sharing.

Interfaces for Enterprise Solutions
Army Enterprise Integration Oversight Office (AEIOO)

January 2005 Page 8 of 14

• Enterprise Service Bus (ESB): Architecture that incorporates a variety of interface
technologies, including Web services, message oriented middleware (see below),
transformation, and routing intelligence in a service oriented architecture.

• Extract, Transform, Load (ETL): Architecture supporting data integration (instead of
application integration) through the extraction of data from source systems and storing it in a
data warehouse to be used by other systems.

• Message Oriented Middleware (MOM): Architecture that uses a centralized software
component to route asynchronous messages between disparate applications, largely reliant
on message queues to provide temporary storage when the destination application is busy or
not connected.

For a more detailed discussion of the interface architectures and their cost implications, refer to
Appendix A. Table 1 compares the key characteristics of the interface architectures listed above.
The table shows that Web Services and Enterprise Service Bus are the most promising interface
architectures, despite their newness. Only in very specific environments do Hub and Spoke, Extract,
Transform, Load, and Message Oriented Middleware provide a case for their use. In almost no
environments would an architect be able to justify the use of the Point-to-Point architecture or the
Accidental Architecture. Despite the computer industry’s use of interfaces for many years, simplicity
and low-cost are characteristics that continue to evade most interface architectures.

Table 1 – Interface Architecture Characteristics

 - Positive

 - Negative
P-2-P Hub and

Spoke
Web

Services
Accidental

Arch.
ESB ETL MOM

Architecture 1 to 1
Distributed

1 to Many
Centralized

1 to Many
Distrib.

Mixture 1 to Many
Distrib.

1 to Many
Central.

1 to Many
Central.

Future Potential Mod.

Maturity Mod.

Install Cost Mod.

Long-term Cost

Agility

Open Standards

Vendor Indep.

Loose Coupling

Scalability

Simplicity Mod. Mod.

Interfaces for Enterprise Solutions
Army Enterprise Integration Oversight Office (AEIOO)

January 2005 Page 9 of 14

D. Interface Cost Analysis

When Aunt Bea says she wants to buy a new Cadillac because she saw an ad with one listed for only
$30,000, is it really going to cost just $30,000? The likely answer is no, due to additional purchase
costs such as tax, delivery, and equipment options. These costs could quickly add up to $7,500, 25%
more than what Aunt Bea anticipated. Then what about her long-term costs? Does her chosen
Cadillac have poor reliability ratings and require expensive maintenance? Will her navigation system
require her to purchase and install an expensive update every time there is a new release? Is her
Cadillac the ‘hot item’ now but likely worthless in a couple years because it’s so outdated?

Many of these same questions could be asked when preparing a cost estimate for a new interface.
Chief Information Officers may offer a reasonable estimate of one million dollars for the cost of a
complex interface in a large scale enterprise. However, to determine a more precise estimate of the
cost of an interface, one must look under the hood to analyze the details of implementing the interface.
There are many components that can significantly affect the cost of an interface, just as there are
many costs that can affect the price of a car. A cost estimate should consider costs for requirements
analysis, feasibility study, design, build, configuration, test, and deployment. Possibly even more
important are the long-term costs of an interface. These may be more significant than the
implementation costs due to direct costs (e.g., maintenance) or indirect costs (e.g., inability to further
integrate the enterprise).

One of the most common mistakes organizations make when interfacing systems is assuming that
operating environments will not change dramatically or that their interface architecture can handle any
change that may occur. If the integration is not effective at accommodating change at all levels,
integration explosion syndrome develops, wherein the organization is widely-dependent on the
integration but cannot increase functionality without devoting substantial resources to development.

Economic Cost Estimating Methods

Exhaustive research has been performed on methods to estimate the cost of developing software
systems; however, there have not been significant studies on methods to estimate the cost of
interfaces. Further contributing to the ambiguity of interface costs is the number of new interface
technologies being deployed as a result of developments such as the Internet and object-oriented
programming. Current interfaces are built in a significantly different manner than interfaces in the
past. Historically, point-to-point interface programs requiring significant coding were the norm;
however, current interface technology allows the use of software tools, largely eliminating the need for
costly coding.

Although traditional software cost estimating methods can still be used to estimate costs for interfaces,
emphasis should be placed on tailoring the estimating methods using the interface cost drivers below.
Common software estimating methods include function point analysis, analogy, parametric (e.g., cost
per line of code), and build-up (i.e., aggregating lower-level estimates).[14] A hybrid of the
approaches may be the best method because each interface environment is so distinct. One method
may work well in a certain situation, but that same method may be a poor method for another
interface. Another important point is that each of the different interface architectures has specific cost
factors that heavily influence the cost of that type of interface. For instance, Web services may not
require significant custom coding because of supporting tools; however, that does not mean it will be a
more cost effective interface architecture if the organization does not have staff with Web services
experience.

Each of the costing methods has optimal times for use in the interface lifecycle (refer to Figure 8).
During the concept and technology development phase, the analogy method is most appropriate due
to a lack of concrete information (other than past implementations that can be compared). During the

Interfaces for Enterprise Solutions
Army Enterprise Integration Oversight Office (AEIOO)

January 2005 Page 10 of 14

system development and demonstration phase the parametric method is optimal because cost drivers
are now more defined and can be used for statistical inferences using data from multiple
implementations. During the production and deployment phase, the engineering build-up method is
ideal because more low-level detailed information about the implementation is available and can be
rolled up to produce higher-level estimates. Finally, during the operations and support phase, the
extrapolation from actuals method is ideal because actual cost information is accessible for similar
activities on the same project.[14] There is some overlap in phases for using the four methods, as
shown in Figure 3.

Concept &
Technology

Development

System
Development &
Demonstration

Production &
Deployment

Operation &
Support

Analogy

Parametric

Engineering
Build-up

Extrapolation
From Actuals

Figure 3 - Lifecycle of Costing Methods

Timeline

For each type of interface evaluated, system integrators (or other staff familiar with the cost
implications of the various interface technologies) should identify the set of cost drivers that will have
the most significant influence on the cost of a particular interface. These cost drivers can be
categorized as functional, technical, or organizational, and include the following:

Cost Drivers

Functional
• Degree of integration that will be performed (e.g., amount of business process logic involved)
• Function points (from Function Point Analysis) (refer to the Glossary of Terms in Appendix B)
• Volume of data exchanged between systems (number of messages/transactions)

Technical
• Number of lines of source code (SLOC) (count does not include comments, blanks, and

continuation lines) Note: many modern interface technologies do not require code
development.

• Complexity of the data structure (e.g., relational, flat file, EDI)
• Number of systems affecting the interface
• Number of interfaces developed similarly
• Maturity of the technology being used
• Technical complexity, including:

o Complex logic and/or calculations
o Multiple input parameters
o Multiple transaction formats
o Complex transformation requirements
o In-depth programmer testing

Interfaces for Enterprise Solutions
Army Enterprise Integration Oversight Office (AEIOO)

January 2005 Page 11 of 14

Organizational
• Amount of budget available
• Time required for development (development hours)
• Number of physical locations and/or departments involved
• Capability/experience of functional and technical team
• Labor rates

Each of the costing methods is susceptible to the same vulnerability, which is placing too much
reliance on the model. The models make it easy to guess at cost drivers, but it is important to have
the best understanding possible of the cost drivers in order to get the most accurate estimate.[15]

As interfaces approach the operation and support phase (i.e., the last phase), it is critical that costs
continue to be tracked and reported to support future cost estimates and comparisons. Identifying the
cost of internally developed interfaces is a basic calculation using the budget and the completed
project plan. The costs are usually calculated from labor hours for analysis, design, coding, testing,
and integration while the fixed costs are used for hardware, installation, and training. However, when
an interface involves ‘purchased’ interface technology, such as vendor provided interface adapters,
the coding effort is much less costly. Although organizations account for this change in cost
estimates, they often do not properly account for the increase in costs to internally integrate the
purchased software. It is widely assumed that as soon as a new technology is put into place it starts
paying dividends right away. However, experienced system integrators know post go-live support can
be extensive before the full benefits of a new interface technology are realized.

Definitive interface costs, especially internal costs, are elusive because there is such an overlap with
many other cost areas involved in maintaining a connected enterprise. This was painfully obvious
while performing research for this document, as most of the cost analysts interviewed were not able to
identify interface costs for the large system implementations they administered. Although there are
many variables that can affect an estimate, it is worth discussing sample interface costs to provide a
point of reference. Table 2 provides interface cost estimates from an established DoD-wide Blanket
Purchase Agreement, for fiscal year 2004, with a contractor for an SAP ERP implementation.[16]
When analyzing the estimates above, it is essential to keep in mind their context. They are estimates
specifically prepared for interfaces between an ERP and an outlying system. As described above,
there are many other types of interfaces and they can have significantly higher cost estimates, such as
pure-play EAI or point-to-point.

Interfaces for Enterprise Solutions
Army Enterprise Integration Oversight Office (AEIOO)

January 2005 Page 12 of 14

Table 2 – Interface Cost Estimate
(between ERP & outlying system)

Task Acquire-to-Retire
Business Process

Procure-to-Pay
Business Process

Interface Analysis No line-item avail. No line-item avail.

Interface Design No line-item avail. No line-item avail.

Build Interface Programs (all
required)

$259,748 $1,069,779

Interface Unit Test Per Interface:
$23,858 (simple)

$48,018 (medium)
$93,016 (difficult)

Per Interface:
$23,858 (simple)

$48,018 (medium)
$93,016 (difficult)

Interface Maintenance Not included Not included

Note: In the table above, simple, medium, and difficult complexity are based on the number of end-

to-end processes, ranging from 1-15, and the number of resources, ranging from 1-30.

Instead of estimating interface costs per implementation task, another contractor chose to estimate
total interface costs for each individual interface in their Blanket Purchase Agreement.[17] These
estimates are based on economies of scale where many similar interfaces are created by the same
team. Again, note that these are estimates for an interface between SAP and an outlying system
where much of the interface development may have already been created and made available by the
ERP vendor. This contractor estimated a total interface cost for each of the three levels of interface
complexity as follows:

 Low Complexity $ 3,456 per individual interface
 Medium Complexity $ 10,370 per individual interface
 High Complexity $ 20,741 per individual interface

Counting Interfaces

There is a general misconception regarding the identification of interfaces. It is not uncommon for an
interface between two systems to be referred to as the ‘X’ interface, when really there might be an ‘X’,
‘Y’, and ‘Z’ interface between those two systems. For instance, an interface between an Army logistics
system and a back-office accounting system may involve one interface with a real-time transmission of
munitions orders and another interface for an overnight batch transmission of accounting journal
entries. While the two transmissions of data are between the same two systems, they are actually
different interfaces and should be managed distinctly. The characteristics listed in Table 3 help
distinguish one interface from another.

Interfaces for Enterprise Solutions
Army Enterprise Integration Oversight Office (AEIOO)

January 2005 Page 13 of 14

Table 3 – Interface Characteristics

Characteristics Examples

1. Name Equipment Maintenance Overages
2. Purpose Post daily overages for maintenance costs
3. Systems Involved ‘ABC’ system and ‘DEF’ system
4. Transmission Mechanism Manual, FTP, Messaging, Web services
5. Data Volume # of records, # of transactions
6. Quality of source data (i.e., errors) Good, average, poor
7. Complexity of data Simple, average, complex, very complex
8. Type of Interface Real-time, pseudo-real-time, batch
9. Direction of Interface Inbound, outbound, bi-directional
10. Frequency Daily, weekly, monthly

E. The Road Ahead

A prominent (and positive) trend in the future of interfaces will be the continued adoption of standards
and open protocols. Commercial standards, such as XML and SOAP, appear to be the wave of the
future and industries such as health-care and military will be forced to follow along.[18] This adoption
of standards allows applications to interface with each other without knowing the details of each other,
following the concept of loose-coupling. In the past, System A had to know about System B in order to
interface with it. However, the use of standards allows System A to interface with System B without
knowing the details of it.[19] Loosely coupled interfaces provide the flexibility needed in today’s
constantly changing information technology environment.

Another trend in the future, somewhat by default and somewhat by design, will be the availability and
use of a mix of interface architectures in the marketplace.[20] Due to an organization’s specialized
needs when interfacing systems, there will never be an interface architecture with complete market
dominance. For instance, there will never be a Microsoft Windows of the interface architecture world.
However, even in the Microsoft Windows example, there are divergent operating systems such as Mac
OS and Linux.

Software vendors are constantly attempting to develop new techniques to efficiently and effectively
create interfaces. One technique that is gaining traction is the meta-data approach. The meta-data
approach simplifies the development process by allowing system integrators to input information about
business processes into a graphical user interface (GUI) tool, which then develops the adapters to
which applications interface. The GUI allows data relationships to be defined at the logical/meta level
instead of the data level. Thus, there is no source code to program and maintain. This approach
makes the interface development process easier to understand, easier to manage, easier to
customize, and easier to evolve. Products such as Oracle’s InterConnect tool and Evolutionary
Technologies International’s (ETI) Solution v5 use the metadata/no code approach. DoD’s Standard
Procurement System (SPS), an automated contracting system for $48 billion in goods and services,
recently had twenty-two interfaces that were created using ETI’s Solution tool.

When asked whether future IT environments will incorporate more or fewer interfaces, the natural
response would be to say that the number of interfaces will grow as information services expose
themselves through well described services such as Web services. However, many organizations will
continue to migrate towards the ERP approach, bringing applications under the same system and
eliminating interfaces. This follows the strict definition of ‘integration’ in the ERP context, where

Interfaces for Enterprise Solutions
Army Enterprise Integration Oversight Office (AEIOO)

January 2005 Page 14 of 14

interfaces are eliminated because the interfacing of business processes occurs within the ERP
software. This concept of integration provides immediate and long-term cost savings. On the other
hand, some organizations will continue to follow the ‘best of breed’ approach and use individual
applications that are optimal for their needs. These organizations will be forced to continue, and
possibly increase, the use of interfaces. However, the antiquated interfaces, namely point-to-point
interfaces, will be minimized and replaced with more current technology to reduce sustainment
costs.[21]

As organizations attempt to avoid the pitfalls of the ‘accidental architecture’, they will realize that
interface architecture decisions should be defined prior to the approval of new system acquisitions.
The practice of assessing interface architecture and standards compliance during the funding process
will continue to be adopted as integration amongst systems continues to gain significance. DoD is
taking steps to block system initiatives (although not specific to interfaces) estimated to cost $1 million
or greater, that are not aligned with DoD’s Business Enterprise Architecture (BEA). The Defense
Appropriations Act of 2004 requires a BEA compliance assessment for all system investments of $1
million or greater.[22] This practice promotes more of a lifecycle approach where interface planning is
performed before any money is spent on implementing a new system, instead of after systems are
implemented and exponentially more money must be spent to integrate systems. This full lifecycle
approach is one of the primary tenets of portfolio management, which is an activity mandated by the
Deputy Secretary of Defense, as of March 22, 2004.[23]

F. Wrap-up

Depending whom you talk to and what terminology you use, interfaces may be frowned upon or
considered essential. Older interface architectures, including point-to-point, are expensive to maintain
and often do not take advantage of increased integration that can be gained from interfacing more
than just flat file data (e.g. semantics). While newer interface architectures, such as EAI and Web
services, are unproven on a grand scale, they promise to provide organizations better efficiency and
effectiveness through adoption of standards and object-oriented technology. Interface technologies
that adopt standards, such as XML, will gain the attention of Chief Information Officers for the coming
years.

Newer interface technologies provide vastly improved capabilities, but their significant implementation
costs are a deterrent for some organizations. However, with the implementation of an appropriately
planned interface architecture, organizations will see that the long term value outweighs the upfront
costs.

Interfaces for Enterprise Solutions
Army Enterprise Integration Oversight Office (AEIOO)

January 2005 Appendix A - Page 1 of 7

Appendix A – Interface Architecture Descriptions

Point-to-Point

System interfaces originated with the point-to-point architecture where one system exchanges
information directly with one other system. Depending on the disparity between the two systems
interfacing, there is some degree of data translation or transformation that must take place for the two
systems to communicate. While translation involves simply changing the format of a data element,
transformation involves mapping a data element from source system to destination system (e.g.
purchase order address to shipping address). Additionally there must be software to transfer the data
between the two systems. This brings us to the primary drawback of the tightly coupled nature of the
point-to-point architecture. The transmission and translation is performed by a software program, and
generally must be tailored for each specific interface. This short-sighted approach lacks compatibility
and agility, and also provides little opportunity for reuse. As the number of interfaces grows, the
amount of effort to develop and maintain these interfaces does as well. Because systems generally
continue to be added, the information systems of many organizations resemble what is called
spaghetti systems.[24] Refer to Figure 4 for an example of how point-to-point architectures lead to
spaghetti systems.

Figure 4 - Point-to-Point Interface

Payroll

Finance

LogisticsHuman
Res.

External
System

X

External
System

Y

External
System

Z

External
System

W

External
System

V

External
System

U

Interface 1
Interface 8

Interface 9

Interface 10

Interface 5

Interface 3

Interface 2

Interface 11
Interface 7

Interface 4

Interface 6

Enterprise 'A' Systems

Interface 12

Batch interfaces discussed earlier are also classified as point-to-point because they still consist of an
interface from one system to one other system. Although the point-to-point architecture has many
drawbacks, it can be useful in organizations that are very small, non-complex, have very low
technology funding, and have relatively static system needs.

Cost Implications:
Point-to-point is a high-cost, high-risk interface architecture that requires dramatically more resources
to maintain than a more unified approach. While the point-to-point approach may provide the ‘quick-
fix’ solution in very small environments, it becomes expensive to scale to multiple systems. The point-
to-point approach requires significant operations and maintenance costs because of the numerous

Interfaces for Enterprise Solutions
Army Enterprise Integration Oversight Office (AEIOO)

January 2005 Appendix A - Page 2 of 7

transfer and translator programs required and the complexity of adding new systems. Because point-
to-point provides few opportunities for reuse, it suffers from poor economies of scale.

Hub and Spoke

The advancement of system interfaces/integration is no longer limited to the system level, but also
includes the semantic level. Therefore, the nature of what is exchanged has changed from simple
character strings to business elements (e.g. invoice, purchase order). This new meaning delivered
with information requires complex systems and places a heavier load on systems. A solution to
handle this heavier load on systems is to use a centralized architecture, analogous to a bicycle
wheel’s hub and spokes. The hub represents the center of interface activity and the spokes represent
the links that connect the hub to various internal and external systems. Refer to Figure 5 for an
example of the hub and spoke architecture. This architecture provides a one-to-many communication
ability as opposed to the one-to-one ability of the point-to-point architecture.

Figure 5 - Hub and Spoke Interface

Finance

Human
Res.

Payroll
External
System

Z

External
System

Y

External
System

X

Interface 2

Enterprise 'A' Hub

Data
Transformation

Workflow

Queue
QueueQueue

Queue
QueueQueue

Interface 1

Interface 3

Interface 4

Interface 5

Interface 6

The hub provides the following critical functions:

• transforming data from the sender’s format to the receiver’s format,
• handling message queues from senders and to receivers,
• providing workflow directing messages to the intended receiver, via the queue, and
• enforcing security and access rights to information (LDAP can be used here).

The spoke constitutes the link between the hub and the applications. The spoke handles the protocol
for circulating messages and provides the adapter software to connect systems.

EAI solutions, which began to appear around 1997, typically follow a form of the hub and spoke
approach. This approach relies heavily on middleware software to exchange messages (consisting of
data, etc.) between systems. Middleware consists of software agents acting as an intermediary
between different application components. EAI is more ideal for single organization implementations
because of its centralized control approach and its tendency to suffer organizational boundary
problems, which are sometimes caused by limitations in spanning firewalls and network domains. EAI
has also suffered from steep learning curves and expensive barriers to entry on individual projects.[25]
In recent years, EAI initiatives have had moderate success with limited future potential. Vendors such
as IBM, SeeBeyond, webMethods, and Microsoft are heavily promoting their EAI solutions to integrate

Interfaces for Enterprise Solutions
Army Enterprise Integration Oversight Office (AEIOO)

January 2005 Appendix A - Page 3 of 7

disparate systems. Due to the proprietary nature of the vendor provided code, EAI generally lacks the
openness provided by Web services discussed below.

Tibco is another leading EAI vendor, but instead of using the hub and spoke layout, Tibco uses an
information bus layout. An information bus is analogous to a large pipeline connecting an
organization’s systems and is beneficial because it eliminates the hub as a bottleneck. As displayed
by Tibco, not all EAI solutions follow a hub and spoke approach. In fact, many EAI solutions are a
hybrid of the hub and spoke approach, Web services (discussed below), and other interface
architectures. For a review of EAI products prepared by the Army Enterprise Integration Oversight
Office (AEIOO) refer to http://www.army.mil/aeioo/docs/AEIOO_EAI_POV.pdf.

In addition to pure-play EAI vendors whose specialty is EAI software, ERP vendors have also
developed add-on products to their ERP software that aim to integrate all of an enterprise’s business
processes, not just those encompassed by the ERP package. For instance, SAP’s NetWeaver and
Oracle’s InterConnect are integration and application platforms that use the hub and spoke model with
an integration broker as the intermediary between the ERP and outlying systems. The advantage of
using these products is that they are integrated ‘out-of-the-box’ with the ERP software. However, for
the outlying systems adapters must be developed to interface with the hub. If the outlying systems are
XML compliant, interoperability is possible since most products are XML based.

Cost Implications:
Organizations looking to implement a hub and spoke solution are faced with a hefty initial price. The
cost for software licensing can range from $250,000 to well over $1 million. This typically carries with
it heavy implementation costs, often five to twelve times the cost of the software licenses.[25] Hub
and spoke product vendors, like other advanced interface technology vendors, state that it is a
strategic investment because it lets companies leverage previous technology investments, add new
technologies at a lower cost, and integrate the disparate systems. Despite that consideration, EAIs’
proprietary nature and lack of a standardized platform providing general-purpose use across an
extended enterprise make them undesirable for widespread use in large organizations. It may also be
unfavorable to medium size organizations because it is too expensive.

When comparing pure-play EAI products versus ERP EAI products, costs are highly impacted by the
specific system environment. For instance, if an environment consists of applications that can natively
communicate with the ERP EAI product, significant savings can be gained by using the ERP vendor’s
EAI product because of the ‘out-of-the-box’ integration. ERP EAI products are becoming very
attractive to system architects as the vendors continue to adopt open standards paralleled with the
‘out-of-the-box’ ERP integration.

Web Services

The proliferation of the Internet has created a vast network that can be used for interfacing information
and services. Web services is an interface architecture that attempts to maximize the value of the
Internet by adopting standard protocols to achieve compatibility between applications using disparate
platforms and environments. OASIS (Organization for the Advancement of Structured Information
Standards) and the W3C are the steering committees responsible for the architecture and
standardization of Web services. Some technologists do not actually consider Web services to be an
interface architecture since its forte is its ability to expose functionality on the Internet; however, it
should be considered an interface architecture since it provides a standardized way of integrating
Web-based applications (i.e., program-to-program communications).

In a nutshell, Web services enable organizations to provide and use ‘services’ via the Internet, both
internally and externally. A ‘service’ can be defined as a package of closely related standardized
functions, which are called (i.e. a program is ‘called’) repeatedly in a similar fashion, and should
therefore be implemented by a dedicated facility, which can be specialized to perform them.[26] The

Interfaces for Enterprise Solutions
Army Enterprise Integration Oversight Office (AEIOO)

January 2005 Appendix A - Page 4 of 7

dedicated facility receives the request, processes it, and returns a response. An often-cited example
of a Web service is that of a stock quote service, in which the request asks for the current price of a
specified stock and the response returns the stock price. In external Web services the ‘call’ and
‘service’ originate in different organizations. Conversely, large organizations may use Web services
internally where service providers and consumers are internal to the organization.

Web services attains it’s ‘openness’ through the use of XML (eXtensible Markup Language) and one
or more of the following three protocols to interface with other parties over the Internet: UDDI, WSDL,
and SOAP. XML, as discussed above, is a specification for capturing and labeling information
exchanged. UDDI (Universal Description, Discovery, and Integration) is the standard for publishing
and discovering Web services (similar to the Yellow Pages). For the Army, this UDDI directory could
reside in AKO (Army Knowledge Online), as well as the actual Web services (i.e., host applications).
WSDL (Web Service Description Language) is the language that describes the location and interfaces
that a particular service supports. SOAP (Simple Object Access Protocol) provides the explicit
serialization protocol used in service exchanges. Refer to Figure 6 for a diagram of the process flow
of these protocols. However, Web services do not currently address the transfer of meaning or intent
and, therefore, it requires parties to agree on semantic standards. Also, security standards for Web
services are currently evolving to provide a unified mechanism for authentication. The WS-Security
1.0 standard was released in 2004 to provide specifications for authentication and confidentiality.

UDDI

Web
Service
Provider

Web
Service

User

www.uddi.org (directory)

Link WSDL document

Step 1 - Find A Service

Step 2 - Discovery

Step 3 - How do we talk? (WSDL)

Step 4 - Let me talk to you (SOAP)

http://yourservice.com

HTML or XML w/link to WSDL

http://yourservice.com/?WSDL

XML with service descriptions

XML Request in SOAP envelope

XML Response in SOAP envelope

Figure 6 - Web Services Process Flow

Web Services is key to DoD’s Net-Centric Data Strategy to support its goal of increasing combat
power of military force by creating a network that connects sensors, decision support systems and
weapons systems with the people that use them.[27] The attainment of net-centricity involves the
fundamental shift to a distributed, Web-enabled, service-oriented paradigm, requiring the support of a
ubiquitous network environment. The primary benefit of Web services is that it provides efficient
access to globally distributed services, and potentially eliminating redundant services. It’s like
cleaning out your desk and realizing you have four staplers – then selecting one to keep.

Figure 7 shows a military application of Web services. Note: this is a simplified example and does not
reflect actual systems in place. Web services could support an Ammunition Officer restocking

Interfaces for Enterprise Solutions
Army Enterprise Integration Oversight Office (AEIOO)

January 2005 Appendix A - Page 5 of 7

munitions in preparation for a mission. Instead of implementing a point-to-point interface between all
of the nearby artillery battery inventory systems, Web services would simplify the activity through its
standard interface. The on-site ammunition inventory system would contact the UDDI directory to find
the location of available battalion inventory systems. It would then ‘call’ the services to request the
inventory level. Once munitions are located, the on-site inventory system could be prompted to locate
the nearest source of transportation via Web services provided by transportation systems.

Figure 7 - Web Services Interface

Ammunition
Officer On-Site

Ammunition
Inventory
System

(Battery ‘X’)

UDDI
Directory

Battalion ‘Y’
Inventory
System

1. find the service

2. provide service location

3. request inventory level

4. provide inventory level

Battalion ‘Z’
Inventory
System

Microsoft is a leading participant in the Web services market through their .Net platform. Many of the
other large software companies compete in the Web services market, including IBM, SAP, Oracle,
BEA, and Sun Microsystems.

Cost Implications:
Web services provides cheaper integration than point-to-point through its openness, compatibility, and
agility characteristics. As opposed to point-to-point implementations, Web services do not require
code development and maintenance for transformation and adapter programs between each pairing of
systems. Many argue that Web services is more economical than the hub and spoke approach due to
its low start-up costs, but this can greatly vary from implementation to implementation. Further, since
Web services is an industry supported movement, contrary to the individual vendor support for hub
and spoke products, its stability has an intangible impact on long-term costs. Also, Web services
consists of relatively simple technology so there is a short learning curve.

The Accidental Architecture

The accidental architecture is something that nobody sets out to create, but almost everybody has. It
is the result of years of accumulating one-of-a-kind interface solutions.[25] Applications are locked
into an inflexible interface architecture, creating stove-pipes of information sharing, otherwise known
as ‘islands of integration’, because the collection of interface technologies deployed cannot provide
the complete solution. Many of these environments start out with a deliberate interface architecture
(typically point-to-point), and then over time additional interface technologies are added. This often
occurs in system environments maintained by large numbers of people with multiple departments
responsible for information technology. Refer to Figure 8 to see how the accidental architecture
incorporates a variety of interface architectures, such as point-to-point, Web services, and EAI,
creating islands of integration.

Interfaces for Enterprise Solutions
Army Enterprise Integration Oversight Office (AEIOO)

January 2005 Appendix A - Page 6 of 7

Enterprise Busines Partners
Payroll Human

Resources

Finance

Food
Procurement

Logistics

Procurement Inventory

Food
Inventory

SupplierShipper

Web
Services

P-
2-

P

P-2-P

P-2-P

Web
Services

P-2-P

Integration Broker

Adapter

P-2-P

Adapter

EAI

Figure 8 - The Accidental Architecture

Problems associated with the accidental architecture include unreliability, poor performance and
scalability, weak security, troubleshooting difficulties, poor redundancy and resiliency, and lack of
standard monitoring and management. The two most important steps to help avoid the accidental
architecture are to adopt an appropriate interface architecture before implementing replacement
enterprise systems and to avoid deviating from the adopted interface architecture. Far too often
organizations implement enterprise systems and then attempt to integrate their system environment,
instead of planning the integration first and then implementing an enterprise system.

Cost Implications:
Few will argue with the notion that the accidental architecture is the most costly approach. To start
with, it results in lost business process integration opportunities because of conflicting interface
architectures. Second, making changes to the accidental architecture can become increasingly
challenging and costly over time as the variety of interface solutions increases. Third, the accidental
architecture requires purchasing and developing software and maintaining staff to support multiple
unnecessary interface technologies.

Other Interface Architectures/Models

Enterprise Service Bus (ESB)
The Enterprise Service Bus (ESB) concept was released in 2002 and is touted as the next generation
of integration middleware. It aims to provide the underpinnings for a loosely coupled, highly distributed
integration network. ESB should be thought of more as a model than an interface architecture since it
incorporates current concepts and technologies, including interface technologies discussed above
(e.g., Web services). ESB incorporates four main components: message-oriented-middleware, Web
services, transformation, and routing intelligence. A defining concept in ESB (as opposed to Web
services) is its ability to remove process routing logic from the applications and place it in the bus so
the applications can focus on application logic. This allows intelligent routing via the addition of
conditional decision points based on the inspection of XML content within a message. Another
defining characteristic of ESB is that messages are generally sent asynchronously so the sending
application can send a message and continue to its next task without waiting for a response (although
there still requires a message acknowledgement).

Interfaces for Enterprise Solutions
Army Enterprise Integration Oversight Office (AEIOO)

January 2005 Appendix A - Page 7 of 7

An ESB enables the implementation of a Service Oriented Architecture (SOA), which is a set of
loosely coupled services working together seamlessly over a network to provide functionality to end
users. Legacy applications do not have to be modified to connect to the bus as connectivity can be
achieved through multiple protocols, client Application Programming Interface (API) technology, legacy
messaging environments, and third-party application adapters.[25] Although ESB allows incremental
adoption, timing becomes an issue for large decentralized enterprises such as DoD, or even just the
Army, because each of the user groups must have the same requirements from a specified service
and the service provider must meet those requirements all at the same point in time. Due to its recent
inception, this model has not been widely deployed on large projects yet; however, ESB shows great
potential for the future. While the concept of ESB was pioneered by Sonic Software, integration
companies such as webMethods, SeeBeyond, and IBM are establishing their presence in the ESB
space.

Extract, Transform, & Load (ETL)
ETL is focused on enterprise data integration, as opposed to enterprise application integration. ETL
involves extracting data from source systems and storing it in a data warehouse to be used by other
systems. Data moves from the source systems to the engine (data warehouse), where transformation
and reorganization are done, then loaded in the target system. ETL products like those offered by
Informatica, Ascential, and Business Objects facilitate the consolidation of data required for data
warehouses. They assume the target system is a relational database management system (RDBMS).
A major impact of the ETL architecture is that, depending on the vendor, it can have serious
implications on scalability and performance since all data must pass through the RDBMS engine. ETL
appears to have surpassed its peak in potential.

Message Oriented Middleware (MOM)
Message Oriented Middleware is a category of inter-application communication software that relies on
asynchronous message passing (i.e., timing of request & reply are not linked). This differs from most
interface architectures (except ESB) where a request is sent to a system prompting it to send a
response back. Most MOM implementations are based around a message queue system, although
there are implementations that rely on a broadcast (all recipients) or multicast (multiple selected
recipients) messaging system. MOM software performs storage, routing, and transformation, all
generally managed through coding at a low-level. A lack of MOM standards and expensive coding
requirements contribute to MOM’s lack of widespread deployment. Products that employ MOM
technology include IBM Websphere MQ, Oracle Advanced Queuing, Tibco Rendevous, Microsoft
Message Queuing, BEA Tuxedo, and Sonic Software’s SonicMQ.

Interfaces for Enterprise Solutions
Army Enterprise Integration Oversight Office (AEIOO)

January 2005 Appendix B - Page 1 of 3

Appendix B – Glossary of Terms

Agility. Agility is the ability to adapt to different interface requirements, the ability to modernize
interfaces at different paces (i.e., forward and backward compatibility), and the ability to bust apart
interface components and realign.

API. An Application Programming Interface (API) is a set of definitions of the ways in which one piece
of computer software communicates with another. It is a method of achieving abstraction, usually (but
not necessarily) between lower-level and higher-level software allowing developers to use programs
already created for commonly used functions.[11]

Business Logic. It is the core of any application, providing the expression of business rules and
procedures (e.g. the steps and rules that govern how a sales order is fulfilled). As such, business
logic includes the control structure that specifies the flow for processing business events and user
requests.[8]

Compatibility. A quality two systems have if they can communicate with each other using similar
syntax and/or semantics.

COTS. The term Commercial-Off-The-Shelf software describes software or hardware products that are
ready-made and available for sale to the general public. [11]

Data Integrity. A characteristic possessed by an interface when data is unchanged from its source
and has not been accidentally or maliciously modified, altered, or destroyed.[11]

Data Interchange Format. An intermediate format required to convert data from a set of input formats
which share common semantics and syntax to a set of output formats without loss or distortion of
content.[28]

Data Interchange Mechanism. A set of tools, utilities, or application programming interfaces which
perform the conversion into and/or out of a data interchange format.[28]

Enterprise. Organizational entity of any size (especially large organizations) that uses information
networks to interact with employees, vendors or customers.

Enterprise Integration. See Integration.

ERP. Enterprise Resource Planning (ERP) systems are management information systems that
integrate and automate many of the business processes associated with the operations or production
aspects of a company. Also referred to as an enterprise system.

Format. The set of symbols and structures which define the physical implementation of data (e.g.,
Structured Query Language (SQL)) conforming to specified semantics and syntax.[28]

Function Point Analysis (FPA). FPA has been proven as a reliable method for measuring the size of
computer software to assist in cost estimating.[29] Function Point Analysis is a structured technique of
problem solving. It is a method to break systems into smaller components, so they can be better
understood and analyzed. Function points are a unit of measure for software much like an hour is to
measuring time or miles are to measuring distance.[30]

Interchangeability. Interchangeability is the ability to interchange components with different
performance and cost characteristics. In this way creating multiple versions of a system in which one
or more components are interchanged is possible because the adoption of these standards makes the
interchange possible. An example is the personal computer.

Interfaces for Enterprise Solutions
Army Enterprise Integration Oversight Office (AEIOO)

January 2005 Appendix B - Page 2 of 3

Integration. (as in Enterprise Integration) Integration is the vertical and horizontal alignment of plans,
business processes, and information systems across organizations and functional boundaries to
provide a competitive advantage.[31]

Interface. An interface provides the capabilities of communicating, transporting and exchanging
information through a common dialog or method.[32] A software interface is the languages and codes
that the applications use to communicate with each other and with the hardware intended to eliminate
the need for human intervention.

Interoperability. It is the ability of software and hardware on different machines from different vendors
to share data. It allows a system to operate with a wider variety of external systems that have also
adopted the same conventions/standards.[6]

LDAP. Lightweight Data Access Protocol is a standard protocol for describing access rights in
networks.

Middleware. Middleware consists of software agents acting as an intermediary between different
application components. It is used most often to support complex, distributed applications.[11]

Net-Centricity. It is the realization of a networked environment (including infrastructure, systems,
processes, and people) that enables a completely different approach to warfighting and business
operations. [33]

OASIS. The Organization for the Advancement of Structured Information Standards (OASIS) is a
global consortium that drives the development of e-business and Web service standards.[11]

Openness. It is an attribute of a technology component that is based on standards. This allows
disparate systems to communicate with each other easily.

Portability. Software systems adopt the standards necessary to run on multiple platforms with
varying hardware or operating systems.[6] The Java language is a classic example of portability
because its programs do not have to be run on any specific operating system.

Portfolio Management. The processes, practices and specific activities to perform continuous and
consistent evaluation, prioritization, budgeting, and finally selection of investments that provide the
greatest value and contribution to the strategic interest of the organization.[34]

Semantics. The content or meaning of data transmitted in an interface.

Service Component. Modularized service-based applications that package and process together
service interfaces with associated business logic into a single cohesive conceptual module.[35]

Service Oriented Architecture (SOA). SOA is a set of loosely coupled services working together
seamlessly over a network to provide functionality to end users.

Syntax. The format controlling the symbols and structures used to describe data.

Timing. A characteristic of real-time interfaces that maintain a transmission pattern in accordance
with the designed sequence.

Transformation. Data transformation is the process of creating a correspondence between data
elements of a source schema to (often different) data elements in a destination schema. An example

Interfaces for Enterprise Solutions
Army Enterprise Integration Oversight Office (AEIOO)

January 2005 Appendix B - Page 3 of 3

of data transformation is to map shipping and billing address information from a purchase order to an
invoice. [36]

Translation. Data translation is the process of changing the format of a data element. [36]

W3C. The World Wide Web Consortium (W3C) is a consortium that produces standards—
‘recommendations’, as they call them—for the World Wide Web. The Consortium is headed by Tim
Berners-Lee, the original creator of URL (Uniform Resource Locator), HTTP (HyperText Transfer
Protocol) and HTML (HyperText Markup Language), the principal technologies that form the basis of
the Web.[11]

Web Services. The technologies involved in exchanging data between different applications and
systems over an IP (Internet Protocol) network.

XML. eXtensible Markup Language. Specification developed by the World Wide Web Consortium
(W3C) used to describe many different kinds of data. Its primary purpose is to facilitate the sharing of
structured text and information across the Internet.

Interfaces for Enterprise Solutions
Army Enterprise Integration Oversight Office (AEIOO)

January 2005 Appendix C - Page 1 of 1

Appendix C – Acronyms

API Application Programming Interface (see Appendix B - Glossary of Terms)

BEA Business Enterprise Architecture

CIO Chief Information Officers

CORBA Common Object Request Broker Architecture

COTS Commercial-off-the-Shelf (see Appendix B - Glossary of Terms)

DISA Defense Information Systems Agency

DoD Department of Defense

DoDAF Department of Defense Architecture Framework

EAI Enterprise Application Integration

EDI Electronic Data Interchange

ERP Enterprise Resource Planning

ESB Enterprise Service Bus

ETL Extract, Transform, & Load

FEA Federal Enterprise Architecture

FTP File Transfer Protocol

GUI Graphical User Interface

LDAP Lightweight Data Access Protocol (see Appendix B - Glossary of Terms)

MOM Message Oriented Middleware

OASIS Organization for the Advancement of Structured Information Standards

NIST National Institute of Standards and Technology

RDBMS Relational Database Management System

RICE Reports, Interfaces, Conversions, Extensions

SOA Service Oriented Architecture

W3C World Wide Web Consortium

XML eXtensible Markup Language

Interfaces for Enterprise Solutions
Army Enterprise Integration Oversight Office (AEIOO)

January 2005 Appendix D - Page 1 of 3

Appendix D - References

The following references are not in alphabetical order. They are in the order they appear in the
document.

[1] Kalin, Sari. Calculating ROI. CIO Magazine. 15 Aug 2002. Retrieved on 4 Aug 2004 from:

www.cio.com/archive/081502/roi.html.

[2] Rumsfeld, Donald. (9 Aug 2001). Town Hall Meeting – News Transcript. Retrieved on 17 Feb

2005 from: www.defenselink.mil/transcripts/2001/t08092001_t809town.html.

[3] Rice Development Process and Procedures. Department of Defense: www.eitoolkit.com.

3 Jul 2003.

[3] Data Mirror Corporation. Benefits of Transformational Data Integration. www.eitoolkit.com.

[5] Jacobsen, Curt. A Framework for Continuous Improvement in Enterprise Application

Integration. Capgemini. Not Published.

[6] Bernard, Scott A. An Introduction to Enterprise Architecture. Indiana: AuthorHouse, 2004.

[7] Buede, Dennis M. The Engineering Design of Systems. New York: Wiley Inter-Science, 2000.

[8] Myerson, Judith. Enterprise Systems Integration. New York: Auerbach Publications, 2002.

[9] Joint Financial Management Improvement Program. Forum Highlights: Keys to Successful

Integration/Interoperability of Business Management Systems. 27 May 2004.

[10] Newman, Michael. 1904 Baltimore Fire Made Standards a Hot Issue. NIST Tech Beat.

Retrieved on 10 Dec 2004 from:
http://www.nist.gov/public_affairs/techbeat/tb2001_02.htm#Centennial.

[11] Wikipedia. Retrieved on 11 Jan 2005 from: www.wikipedia.com.

[12] DoD eBusiness. Department of Defense – Defense Information Systems Agency. Retrieved on

7 Jan 2004 from: www.disa.mil/main/prodsol/ebusiness.html.

[13] Belliappa, Goutham. Base-lining Interface Architecture for an Existing System. Cap Gemini

Ernst & Young. 2003.

[14] Altarum. Economic and Business Case Analysis Approach. Not published. 14 Oct 2003.

[15] Society of Cost Estimating and Analysis (SCEA). Software Cost Estimating, Unit IV, Module 12.

Not published, class materials.

[16] Enterprise Software Initiative – Department of Defense. BearingPoint – ESI ERP Systems

Integration Services (Blanket Purchase Agreement). Retrieved on 28 Dec 2004 from:
www.don-imit.navy.mil/esi.

[17] Enterprise Software Initiative – Department of Defense. Deloitte – ESI ERP Systems Integration

Services (Blanket Purchase Agreement). Retrieved on 28 Dec 2004 from:
www.don-imit.navy.mil/esi.

Interfaces for Enterprise Solutions
Army Enterprise Integration Oversight Office (AEIOO)

January 2005 Appendix D - Page 2 of 3

[18] von Bernewitz, Carla. Director, Army Enterprise Integration Oversight Office. Personal
Interview on 18 Aug 2004.

[19] Derby, Paul. Enterprise Architect, U.S. Army, Army Architecture Integration Cell (AAIC).

Personal Interview on 11 Aug 2004.

[20] Nyere, John, Enterprise Architect, Office of the Under Secretary of Defense (Acquisition,

Technology, & Logistics). Personal Interview on 26 Aug 2004.

[21] Wright, Larry. Senior Manager, Capgemini. Personal Interview on 14 Sept 2004.

[22] Defense Appropriations Act of 2004, Public Law 108-87, Section 8084(b)(1). Retrieved on

3 Jan 2004 from:
www.dtra.mil/press_resources/publications/deskbook/full_text/Public_Laws/Pub.%20L.%2010
8-87.pdf

[23] Wolfowitz, Paul, Deputy Secretary of Defense. Memo: Information Technology Portfolio

Management. Retrieved on 13 Jan 2005 from:
www.army.mil/aeioo/toolkits/documents/refs/DepSecD_IT%20PfM_3-22-04.pdf

[24] Serain, Daniel. Middleware and Enterprise Application Integration. New York: Springer, 2001.

[25] Chappell, David A. Enterprise Service Bus. California; O’Reilly, 2004.

[26] IONA. Web Services – Setting the Stage. www.iona.com.

[27] Strauss, H. Defense CIOs Must prepare Now for Network-Centric Operations. Gartner

(G00123410). 17 Nov 2004.

[28] Sheehan, Jack, PM Knowledge Integration, Defense Modeling & Simulation Office. Data

Provisioning Using Authoritative Data Sources. NDIA SBA Conference briefing, 16 May 2001.
Retrieved on 13 Sept 2004 from: www.dtic.mil/ndia/2001sbac/sheehan.pdf

[29] Heller, Roger. An Introduction to Function Point Analysis. Q/P Management Group, Inc.

Retrieved on 12 Aug 2004 from: www.qpmg.com/fp-intro.htm

[30] Longstreet Consulting, Inc. Fundamentals of FPA. Blue Springs, MO. Retrieved on 17 Aug

2004 from: www.ifpug.com/fpafund.htm

[31] Establishment of the Army Enterprise Integration Oversight Office (AEIOO), Secretary of the

Army. 16 Apr 2003.

[32] Federal Enterprise Architecture - The Technical Reference Model. Office of Management and

Budget - FEA Program Management Office (FEAPMO). August 2003.

[33] Stenbit, John P. Department of Defense Net-Centric Data Strategy. Department of Defense,

Chief Information Officer. 9 May 2003.

[34] Federal CIO Council Best Practices Committee. A Summary of First Practices and Lessons

Learned in Information Technology Portfolio Management. March 2002. Retrieved on
10 Jan 2004 from: www.army.mil/aeioo/toolkits/documents/refs/DepSecD_IT%20PfM_3-22-
04.pdf

Interfaces for Enterprise Solutions
Army Enterprise Integration Oversight Office (AEIOO)

January 2005 Appendix D - Page 3 of 3

[35] Architecture and Infrastructure Committee, Federal Chief Information Officers Council. Service
Component-Based Architectures Version 2.0. June 2004. Retrieved on 24 Dec 2004 from:
www.cio.gov/documents/CIOC_AIC_Service%20Component%20Based%20Architectures%20
_2.0_FINAL.pdf

[36] Microsoft Developer Network. Transformation vs. Translation. Retrieved on 25 Jan 2005 from:

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/sdk/htm/ebiz_prog_map_edzn.asp

